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* ABSTRACT

In this paper, the authors consider the problem of testing for the

equality of the last few eigenvalues of the covariance matrix under

* correlated multivariate regression equations (CHRE) imdek. Asymtotic

distributions of various test statistics are derived when the underlying

distribution is multivariate normal. Some of the distribution theory is

extended to the case when the underlying distribution is elliptically

symmetric.
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1. INTRODUCTION

The classical multivariate regression model plays an important role in the

analysis of the data in various disciplines. This model is nothing but a set of

correlated univariate regression equations with the same design matrix. But,

situations arise often when it is quite unrealistic to assume the same design ma-

trix for each regression equation. For example, it is not realistic to assume,

in some situations, that the same independent variables are adequate for predic-

tion of each set of dependent variables. In these situations, we should con-

sider correlated multivariate regression equations (CMRE) with different design

matrices. Some work was done in the past (e.g., see Zellner (1962)) on the

estimation of location parameters under correlated univariate regression equations

model. Recently, Kariya, Fujikoshi and Krishnaiah (1984) considered the problem

. of testing for the independence of two sets of variables whereas Sarkar and

Krishnaiah (1984) considered the problem of testing for sphericity under the CMRE

model. In this paper, we consider the problem of testing the hypothesis that the

* last few eigenvalues of the covariance matrix are equal under the CMRE model.

In Section 2 of this paper, we given some preliminaries which are needed in

the sequel. It is complicated to derive the likelihood ratio test statistic under

the CMRE model. So, we considered a LRT-like test statistic. When the design

matrices in the CMRE model are the same, the above test statistic is equivalent

to the usual LRT statistic for testing the hypothesis of the equality of the last

few eigenvalues of the covariance matrix. In Section 3, we derived an expression

for the null distribution of the LRT-like test statistic under the CMRE model

when the sample size tends to infinity. The expression obtained in Section 3 is

the same whether the density matrices are equal or not. In Section 4, we derive

the asymptotic distribution of the LRT-like test statistic under local alternatives.

" Asymptotic nonnull distributions of a class of test statistics are derived in

• • , € . , *.,*.*. ' ' '- , '. -. .. . . ..- .. . ; ., '.- .'.-',i
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Section 5 under fixed alternatives. The above results are derived under the

assumption that the underlying distribution is multivariate normal. In Sections

6 and 7 we extend some of the above results to the case when the underlying distibu-

tion is elliptically synetric. Finally, in Section 8, we discuss applications

of the results of this paper in the area of principal component analysis.
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2. PRELIMINARIES

Consider two correlated multivariate regression equations given by

Y -Xe1a1 +Em"": 1 1811 + 1

*, (2.1)
X2 X022 +E2

where 61: rlxp1 and 622: r2 P2 are unknown, whereas the design matrices XI: nxr 1

and X2 : nxr2 are known and are of full rank. We will also assume that the rows

of (E1 E2 ) are distributed independently as multivariate normal with mean vector 0

and covariance matrix X where

£11 121
E - (2.2)

.. LI21  122

and EIj is of order pxp. The model given by (2.1) is known as the correlated
i J

multivariate regression equations (CMRE) model. Kariya, Fujikoshi and Krishnaiah

. (1984) considered the problem of testing the hypothesis Z12- 0 and derived

asymptotic distributions of test statistics associated with testing the above

-- hypotheses. Sarkar and Krishnaiah (1984) derived the asymptotic distributions

2"* of test statistics associated with testing the hypothesis that E - 2I. In this

paper, we derive asymptotic distributions of some test statistics used for testing

.the hypothesis H w: A vhere- >...> p are the eigenvalues of Z.tehptes 0: p-q+1 -  .- p 1- p

'* An estimate of Z is S/n where

s Y!QlYl Y!QlQ2Y2] (2.3)
"" 'Q2QlY l. Y2Q2Y2

and

Q n - Xi(XiXi)-x1" (2.4)
4.n

* -a. .a* * - . - -~

- *-..*
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.. Unless the design matrices are the same, S/v is not an unbiased estimate of E.

An unbiased estimate of Z is E where E -(1i)9

ii i Y[ f(-i) E12"-Y-'Q1Q2Y2/t

and t is rank of Q1Q2 . Although Z is an unbiased estimate of £, it may not be

positive definite. So, we will use S/n to estimate Z in the sequel.

We will nov descrie a representation of S due to Kariya, Fujikoshi and

Krishnaiah (1984) since it is needed in the sequel. Consider the transformation

Wi ZlYi (2.5)

where M is of order (ro-ri)xpi and U. is of order (n-r 0 )xpi. Also, Z,: nx (n-ri)
i

satisfies Z'Z - Q, and Is chosen in the following way. Let Qii n-r i ZJZ 1 Qo

= I-X(X'X)- ' where X - [X1 X2 ] and no =n-r0 . Then, we can express Q as

Q0 z0 z such that 0 nI Next, let (j- 1,2) denote the projection matrices

. onto L(X) nL(Qj) where L(A) denotes the column space of the matrix A. Then, we

can decompose Q as Qj W Z Z' such that Z Zj - I . We then choose Z1 = ,Z0)Sj J J r0 -r c 0

and 2  (Z2 ,Z0 ). In this case, ZiZ! - Q, and ZIZ i - In . Using this transfor-

mation, Kariya, Fujikoshi and Krishnaiah (1984) decomposed S as follows:

S Li I - G+B (2.6)

2. 22i 2

. where

"= (UI  U2) (2.7)

U2

% z . .
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M 1  M' KM
B - L,] - Z 2 . (2.8)

In deriving various asymptotic distributions, we use perturbation technique

repeatedly. So, we review this technique briefly.

Consider a diagonal matrix A with the ordered latent roots AX >A 2 >... > P1- 2 -- p

and assume that the perturbation of A can be expressed as a power series in e as

follows:

SM- A+ V 2(2) +0(E), (2.9)

where V , j = 1,2,... are symmetric matrices of order pxp and E is a small real

number and M is a pxp symmetric matrix whose eigenvalues are ki>12 > ... > p •

Assume A is simple for a -l,2,...,p. Then the perturbation expansion of ZL is

given by

.2.E = A +ev(I) + 2 [v (2 ) + I v]+O(E3) (2.10)

where

V(j) (j) and , -la:::-(va ) a -(A, -A,) ,ct#8.

The above expansion is due to Lawley (1956).

Next consider the case when latent roots of A have multiplicities. Suppose

Xql+q2 ...+q a -l+ f. .
+.. X .+ q(=  that is, 8a has multiplicity q for af-1,2,...,r,

ql+2 + ''+ qr = p and qo 0. Then the mean eigenvalue of M corresponding to 8 is

- +~T(1)+ C2(2) +0( 3 ), (2.11)

where
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T(i) I tr VU )

a q ac

(2) _1(2) + t-[v(1).(I)
I( q tr [V ca a a Sa

aBo

ea " (ea - e ),

.. with

-i) ) , *i ~ )
v(i W.. .

L rl r2 . . . rr

and V i is of order q xq This result is implicit in Kato (1976). Fujikoshi

(1978) also derived it by using a different method.

d
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' 3. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST
The LRT-like test for H is given by

0
:%"";~ ~ Py ~/2

A [ -=i/C) 9
p-q+l p-q+l

where i 1 >t 2 >*"' >1 are the eigenvalues of S - S. We will consider the
-p 0 n 00

distribution of

T--2 log A
P-q

-n[q log (trS°  i-l,)-qlogq-logjS J

p-q
+ . log 1 . (3.1)

For the asymptotic theory we assume, without loss of generality, that the covariance

matrix Z is diagonal. Hence, under H ,

L"-~~~~ -~diag( X 2 , ,. , )

W"E , say. (3.2)

As mentioned in the preceding section, S can be written as G+B where

G-Wp (E 0,n0 ) under Ho, and G and B are independently distributed. Define

V - no((G/n o) - o) (v ), so that

s E + - B (3.3)o'A. 0 - n
0 O

0

We assume that the population roots lX ?2. ..,Xp- q are simple. Then we have from (3.3)

' 22p-

Z - X + i+ - {b + X } +kk+ 2 Q (3.4)n o j k.1 J Jv n
0 0

for j =1,2,...,(p-q) where

J

. . . . . . . . . . . . . . . . . . . .. .. . .
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
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- )iviVjkVj -V v 2

i-I k-11' jk "k jk~ 1 1 jk jk
i~j k~j k~j

'5k + 2 ! jk bj k vjk ] .

k~j

X jk (Xj- Xk)l and XkinX for k p-q+,,o.,p. Next, let T -a T, where

a -nm I n. Then from (3.1) and (3.4) we get

T +T
T-T 0+ 1 2 (35)

0

* where

p-q 1- 1- 2
I - j -1X 1- ii

k~j i~j

1p-q 2 2 1p-q 22 /2 + v 2/AX

1=1 Jinp-q+1 l i-p-q+1 ii

2Xp-q+1 2X p-q+1 p-q+1 2qX p-q+1
i~j

1- 12 2
7 1 ii Xji kj vji 'jj IXjkvjk}

j=1 j X 1=1 k-i kojJ
i~j k~j

p-qv2 1 -1 3 1___,3 vj3

J-1l X2 0 Xjkv'jk -tr (E v) +- P Al 3 X V )
3 p-q 1i qX -+~

+) p-+ j2iki kk

k~j

and
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p-q

TL b23 A - v bj k 1 jkb jk v j  J-i 2 vjjbjj
x k#J kk

2 ( v ( b i) + b (3.6)
qX p-q+l p-q+l i=l J-i t

From (3.5), the characteristic function of T is

(t) =i 1 (t) + 2 (t) +0(n 1 ) (3.7)

. where

itT it, "E lt)E[e o {1 + T1]

v~In
0

itT

2(t) -E[e 0 - T2]. (3.8)
'4;-

0

* Note that the characteristic function of

1 q n/2-2(n /n) log [ l1 di  ' d 1o p-q+l i qp-q+l

is 0l(t)+0(n° ), where d >d > d are the eigenvalues of G/n'. We know that-- -p o'- 2it-f/2
[see Fujikoshi, 1977] , (t) (1-21t) where f - (q(q+l)/2) - 1. Without

loss of generality, suppose q >-P2 i.e. p-q <p1 . Then under H0,

E(bii) (r -r ) Ai' i-1(1)p-q
0

(ro -r) q ,...,p

(ro-r 2 ) X , +l,...,p

E(bij) 0, i#j. (3.9)
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Taking conditional expectation with respect to M i's only we get

ii

EJT -
j  p J- (r-r ) i( v [(r -r )(q-p

M 2 J-1 lj o I qXp-q+l j o 1

o- r0 - 1 )ii + i 0r l ii+ (o- r2)P2 + +i

i=l i p-q+l

+ (r - r2)Pl l

i1

p P1
= C1  _ - C2 p_+vi, (3.10)

pl+l p-q+1

where

(rI - r2 (r - r2)P2
CIX C2 ( q

Let

*! (Vi ... Vl Vlv2 Vp .OVpi)
ill*eoo pp 1 , 'lpoov2 3 ," p Pooo , -

Then

E(v )=0, and Var(v ) = A,

where A is a diagonal matrix whose elements are given below:

IF'~~~ ~ 2tii1p-q

Var(v ) =

-2X, i=p-q+l,...,p.

--- , < i j <p-q
Var (vj

X"", I < i <p-q, p-q+l <j <p

='-2

X2  , p-q+l <i j <p. (3.11)

.................................................
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* The limiting distribution of V- (v i) is the distribution of V- (vi), where vii

(i<J)'s are all independently distributed as normal with mean 0 and variances

given by (3.11). This implies that, in the limit, the elements of v are distribu-

ted independently as normal with zero means and variances given by (3.11). Now,

let T -v Av , where A is a matrix whose elements depend on X 's, X, p and q.
0~

Hence,

ititvv 1*' .- * , Pl , ,
2(t) tK et*A* 2 I e [C1  I 1  C2 p v.ldv 0

fpl+ p-q+l

where K1 (21r) -p22AI-I/2 . So, from (3.7) and (3.8),

-1(t) = el (t) + O(no l )

- (1 - 2it)- f/2 + o nl), (3.12)

where f (q(q+l)/2) -1.

Inverting the right side of (3.12) yields the following expression for the

asymptotic distribution of A:

Pr[-2n° logA/nx] 2 -1(3.13)
r[ 0 log A/n < x]Pr(Xf x) +0O(no(.3

where f [ f(q(q+l)/2)-1].
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4. ASYMPTOTIC NON-NULL DISTRIBUTION OF

THE LRT-LIKE TEST UNDER LOCAL ALTERNATIVES

In this section, we derive asymptotic distribution of the LRT-like test sta-

tistic under the local alternative H where

He: XiX-+(6i/Vf ° ) 0 ip-q+l,...,p (4.1)

where 's are not all equal. Now, define V as V - v4io ((G/n )-Eo) so that
0 0 0

V " V+D(0 ) where D(0 )  
)diag(0...•9,6. Hence

V 6 p-~l "'p

S E +V +B (4.2)
0 0 0

An 0

Note that (4.2) is of the same form as of (3.3), except for the change that V is

o replaced by V. Hence, from Section 3, the characteristic function of T is

,'.+ b(t) -0(t)+ +2(t) +O(n~ l

where *1 (t), 42 (t), TO, Tl, T2 are as defined in Section 3, with vij's replacedby

v 's. Also note thatij

ii vii, l =(1)p-q,

• v i  v i J, i,J = (1)p

v vi +Gi' i Mp-q+l,...,p.

- Now, define

V (V Vpp 12 lp v23,,, 2p vp )

Then

e " . .' " ' ,. .. ,"-"...",".,-. - . .-. ' .. ' , ' .; .,... ,'.'..,. .'.. .'.'.. . ...- . ,-..-.-.. .-.... .,.' . .. ",,
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E "V*) " , Var(V) -A,

where

-=(O,...,O, ep_..,O
Ue ( 9 -0 0 0P q+ 1 " , 0,...,)

and A was given in Section 3. As n0 -), V is distributed as multivariate normal
~-*t -*

with mean vector p e and covariance matrix A. Further, we have T -V AV and
0

~Pi!(T2) " c, i -C2  i
i=P,+li-p-q+l

where C1  (rl- r2)(q-p2)/Xq, C2 = (r -r 2)P2/q so that we get

it l-21tAAI-1/2exp[- {u 1 (21t)r (A) r-iA ]
- -r--tl ep

0

x C' [ (21t)r(.AA)r'lAU ]  (4.3)

r-l

where c' -(Oc'-CC_' 0e'2  ). Note that the characteristic function
p-q 2 q-p 2  1 p 2

wherec' (O'p~q 2 -2 P2. -p- -p-

of

is -(t)+O(n where a n /n, and d >... >d are-the eigenvaues of Gin

,o -

* where under He, G-W (na E + (D/n d). Hence (see Fujikoshi, 1981)

M M(t) f(t, 62/2)[1 +_L 2 b -3 (l-2it)- ] + 0(n-I) (4.4)
- j J-o J

2
. where, f(t,A) is the characteristic function of noncentral X variable with f df.

* and noncentrality parameter A, and

,d
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f 1 (q +2) (q -1)

a 1[ta _ -1 (trQ) 2,

P diag(O p-q~l**os. 8)

0 6

b1 [~-tril 3 +2q- (trg)tr 2 -2 (tra) 3,

1 3 -1 2 -2 ;[trn -3q- (trfl)trIg +2q2 (tril) 3.

-B-
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5. ASYMPTOTIC DISTRIBUTIONS OF A GENERAL
CLASS OF TEST STATISTICS

In this section, we derive asymptotic distributions of the function p

which is analytic around (A.l,..., 1p ) for two cases. In the first case, we assume

that the first partial derivatives of (p) are not all zero. In the second

case, we assume that all of the above partial derivatives are zero. The modified

* LRT statistic, under the null hypothesis, belongs to the second case whereas it

belongs to the first case under the alternative hypothesis.

Let -a8 for i-1,2,...,(r-1) and X .- X -X- . Also, letJ
i i r p r

for i-l,2,...,(r-l) and Jr denote the set {r,r+l,...,p}. We make the following

assumptions:

af -

M f f for j c J (5.1)

(ii) -Aa I for j e J, keJe

" where L' = (t 1 ,...,tp) and A' m ( Expanding the function

around A' - ( and using perturbation expansion

of it,...,tp, we arrive at the following:

L = n 0 [f( 1,....L p)-f(A1 ...,Ap)]

r r r r
Sf trV + [ f trB + f 0 trV V

a-l n~# amf ar B
0

+ trV trV8]

+O(n 1) (5.2)

L - V%:%*.~.\~.%%~VvVV . . . . ... . . ...... .
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where V - (V ), B - (JB) and V and B are of order q xcwhere ql 1 ... qr~lm.
as8 as a asB

Let r = p-q+1. Then,

L -T + (TL + T )+2 0 (A1
L 0 1 2

where

To= f v +

0 T0  a aa p-q+l L vi
act -q~lp-q+1

T pIq p-q q2 p

a a a al p-q+1

P-q p 2

sl p-q+1

1 p-q p q pq+ ~ i 1 1 1 vli (5.3)

all 0I f a ev av 8 + a 1 ar aa p-q+1

1 p-q 2

+ ul 0- p-q+l 1 2 p-q+1

and

T a2p l a baa +fp-q+l bii"

a-I a p-q+1

* The characteristic function of L, *(t), can be written as

01(t) + *2 (t) + O(n 1),

where *l(t), * 2 (t) have the same expressions as in Section 3, with T, TI, T2 given

by (5.3).

Now, let

v m(v 1 1 ,...v ; v 1 2 .. v
." = ll'"" " VpP ; v12 ' V 23 " " * V.p%" " " -Vp- 20***g..% 23vvp)"
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Then as n -, v is distributed as multivariate normal with mean vector 0 and co-

variance matrix A where A is given in Section 3. Also, let

t a'f (fl,..., f ,f f f,O,.. 0).

O p-q r r r

q

Then, T -a'v . We can write T as T - v A v , A being dependent on f.'s,
0 RO 1.. O 0i

Sf l's, ;k Is, p and q. Then we have

-t 2/2"a'Aa it 3t
. 1 (tI-e o O[ -tr (A A) + {a' AA 4' 0

""0 0

'' 4 P-q 3  3 q3 -~ 0nl)
+ ( P f3X3 + qXf ] + 0(n ). (5.4)

To evaluate 42(t), we take conditional expectation of T2 with respect to Mi's

and get

p-q
E M(T2 (r -rl) a Xfa+f r X[(r-r 2)P2 +(r -rl)q]

M 2 a 1 ct-l2 0r)q

-K2 (say)

assuming that q>p 2 without loss of generality. Hence,

ita'v*
j2(t )  it K2 E[e o

0

-t 2/2-a'Aa
", -K e o (5.5)

22G

2T it (it) 3_ -1+(t)=e +n-1 + r+ 0(no (

0 0

where

-ft=.-.. - ,,i ,, . - m n ftS 'ft -- ft-tl . -it t .i ° - i *. t- ..
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;p-

.4: 2 2 p- 2 2 2
T -a'a -2[ f I +qA f 1 ]

9l K 2+tr(Ao0A),

g aAA Aa +( f 3 + q 3 ) (5.7)
S0 0 0 o 3p-q+

" Inverting the right hand side of (5.6), we get the following

Theorem 5.1. Let

L - i {f(tl.v'' )-f(k 1 ''' )/ T (5.8)

where T >0 and A > >..> A >X m..=A A. Then1 A2 * p-q Xp-q+l" p

• 1 (1) 3 (3) -1
P[L < x]- (x)--- [(gl/ )$ (x) + (g3/T )0 (x)l+O(n 0 (5.9)-n

0

' where (J)(x) is the jth derivative of the standard normal distribution function

"(x) and T, g, and g3 are given by (5.7).

When q- 1 in the expression (5.8), we obtain the asymptotic distribution of

L when A > .,.>N1 P'

When fl,.,.,fr in (5,2) are simultaneously equal to zero, we cannot obtain

the asymptotic distribution of . p) from (5.8). For example, let

-T

o where T was defined by (3.1). Then

"I 0 (5.10)

for j- 1,2,...,p when A.p-q+l1 " X p So, the asymptotic distribution of the LRT-

like test statistic cannot be obtained from Theorem 5.1.

-..5. , .- " " " . -'. -'." '. .',".". , -' ' ." ," ' -". ". " " Z

4, l l l l ... ...
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Now let

L - n {f(I. . .p )-f(E 1 9."'' p)}

where X>X2>...>Xp-q >Xp-q+l=...=Ip - X and we assume that f(l" p) satisfies

the conditions (5.1). Also, we assume that fl= ... =f 0 and f' are not
ap-q+1 Mao

all equal to zero simultaneously. Then

** 1 r r
L I f trV tr V

= V'FV (5.11)

where V' = vi ,v ( r ,tr V ), r-p-q+l, and tr V -v +...+v ,and
w ll' (p-)(r-1) rr rr rr pp

F = 1(f But, we know that vll,...,v are distributed asymptotically as

independent normal variables with zero means and variances given by var(vii)

2 2 for i- 1,2,...,p-q and var(v 2 for i-p-q+l,...,p. So, L is
ii

asymptotically distributed as a linear combination of independent chi-square

variables with one degree of freedom.
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6. ASYMPTOTIC DISTRIBUTION OF AN ANALYTIC FUNCTION
WHEN THE UNDERLYING DISTRIBUTION IS

ELLIPTICALLY SYMMETRIC

Now we will give asymptotic distributions of the statistics L and L

defined in Section 5, when the underlying distribution is elliptically symmetric.

Here we note that x: nxl is said to be elliptically symmetric if its characteris-

tic function is of the form exp(it'u)0(t'(Qt), where u: nxl, 9: nxn, and 0>O

and we write x - EC (u,1; ). Multivariate normal, multivariate t and some other
- n -

distributions-belong to the family of elliptically symetric distributions.

For a discussion on the elliptically symmetric distributions, the reader is

referred to Kelker (1970).

In this section, we assume as before, that the rows of E are independently

distributed with the same dispersion Z and also

e EC (o,X I ;0) (6.1)
-in. i

where X c xj ,2,...,p.

For simplicity of notation, let r -r 2  r and no - -r. Also let Q ij
nl n

Q (q(2) ) . We assume that each of (1)(2)/n
2i ij q %qa Ino, I 20

n n
land In, j - 1,2,3 are of 0(1) and we write for large n

q 2/no K j-j 1,2,3
aa 0 1

2
j q 1j /no KQ j 1,2,3

and
q1) (2) /n 3  (6.2)

CQ C~

Then it can be shown that the limiting distribution of Z /n (- - D ) is
o n

0
the same as that of Z - (2ij), where

':" ,,,..., .. ,,.-. . _.........,......................... ..... ' ...... , . ..
" , '. . ... ., . -: -..... : .: .:,'..:':..:: .. •. ," -, - " , , . . .. :. ',-, - .- •,.-...-. -.. .. .. , ,. ., ,
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z N(O,2 2 2P),

ii (OXix 0 (6.3)

where

- f1 + (0"(o)/ , (o)2~ 1'l n1,,.O

Li+ 2 0 (0 2 )K(2)

and2 

K i

2 01(o)+ 2 1

4"(o) (2[(2) + .9()2

[( 3) + 0 (0) K (3) 1 J iil..p;p+1...,p
,(0)

jin1,...,-p; J p1+1, '..p.

Also

Cov(Z11 Z~ z x 0 (b0)..i)c, ioj (6 .4)

where

K((1) -jIM

C-
1(2)

All other elements of Zare uncorrelated.
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We define f(,"". t) the same way as in Section 5 and make the same

assumptions on it. E also has the same structure as in Section 5, i.e.

xp =...- =X.
p-q+1 p

Let

Z' l (1 , . . . ,z pp , Z 12' . . .'z lp' 23 ."' Z2p' . . .' (p-l)p

Then for large n,

z ~ (0, ), (6.5)

where 0 - (wij)

0 s j

wj's are given by (6.2), (6.3) and (6.4), with the restriction X pq+l-.. .- piX -=.

We get the following result for the asymptotic distribution of f(Rl1 " "" , p ).
p

Theorem 6.1. Let

*
L rn0 U 1.'S1 p p )}/-

where T> 0 and A1>... >A A x =..-A -A. Then1 p-q p-q+1" p

*< 1/2)
P[L< x] O x) + O(nl (6.6)

_ 0

where O(x) is defined before, and T 2 a'Qa , where (fpll '
0 -0p-q'fp-q+l' "p-q+l'

O ..... ,0). When q 1 1, we get from (6.6) the asymptotic distribution of L

when X >X >...>X
1 2 p

If f - OV-a and f,,'s are not all zero simultaneously, we can write
""** 1I 2)

L no{f(1 ,.. .,t) - f(l,...,Xp)1 as z'rz + O(n- ), where r is a function
Sp 0 **

of f a, p and q. Then the characteristic function of L is
e-O

......................................•................... .........,....,............ ......................... ....... ...... .............. ........... ,..

r. "# . o e .* o° o... " .. ..-.. . . . . . . . . . . . ..-. . . ..,.. . . . ..o ° I ," o. °* * . . o ,,, , ..l ,i
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I1 - 2itrn-1/2 
-1/2

which implies that for large n, L is distributed as a linear combination of

X 2 variables with 1 d.f. We can get the asymptotic null and nonnull distribu-

tions of the LRT-like test as special case of the above results.

q

4. . . . I*.............

-o.. * 4 * .* . . . . . . .
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7. ASYMPTOTIC DISTRIBUTIONS OF THE LRT-LIKE TEST

WITH ELLIPTICALLY SYMETRIC ERRORS

In this section, we derive the asymptotic distributions of the LRT-like

test under the following assumption on the errors:

e - EC (0, 1 aE 0) (7.1)
- np n

* where e a Vec E and E is proportional to E, Then we can write (e.g., see Anderson

and Fang (1982)) d

E = RUA,

* (np)
where A'A = E , A; pxp, U: nxp, Vec U u distribution function of R is

related to and R is independent of U. Here "X = Y" means that the distribution

of X is the same as that of Y. Let us write A = (A1 A2) where Ai is of order

' nxpi, i= 1,2, and p- p1+P2; then we have E1  RUA1 , E2  RUA2 . Since

E SE  EQIQ2E2

S E2Q2QIEI E2Q 2E2

we get

2 rAI,A, A'U,'QIQ2UA2-

AvU QUAI  A2'UtQ2UA 2

2
Using this it can be shown that A is independent of R2 . Hence the distribution

of A will be the same as in the normal case. Thus the asymptotic null and non-

null distributions of A under assumption (.7.1) are the sanfe as in Sections 3 and

4 respectively.

11 | ... .. .. * . ..
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8. APPLICATIONS

The motivation behind the study in this paper is to derive some asymptotic

results useful in the area of principal component analysis under the CMRE model.

-' The object of the principal component analysis is to select a small number of im-

portant linear combinations of thp variables which will best describe the varia-

tion among experimental units.' The variance of i-th most important principal

component is given by X. If Xi is very small, then the corresponding principal

component is not important. So, it is of importance to test whether the magnitude

of Ai or the relative magnitude of Xi with respect to A +...+X is significant.

In many of the practical situations, the last principal component is not signifi-

cant. In these situations we may test the hypothesis X 1qn-. -p and if this

hypothesis is accepted, we conclude that the last q principal components are not

important. One possible test for Ho under the CMRE model is the modified

LRT test statistic described in Section 3. Other possible test statistics

are ratios of the roots like, for example, tp.q+l Ut +...+t ).Ip- l p p-lp

etc.

The results of this paper are useful in implementation of the above proce-

dures.

The results in this paper are also useful in studying certain structures of

the covariance matrix. For example, the problem of testing the hypothesis that

Z has the intraclass correlation structure can be handled by testing the hypothe-

sis that X2-...- A p If E has particular structure, we may take advantage of the

structure to improve the efficiency of the estimates and power of the tests.
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